
Information Sciences 450 (2018) 200–226

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Shared-nearest-neighbor-based clustering by fast search and

find of density peaks

�

Rui Liu

a , Hong Wang

a , b , c , ∗, Xiaomei Yu

a , b , c

a School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong 250358, China
b Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology, Jinan, Shandong 250014, China
c Institute of Life Science, Shandong Normal University, Jinan, Shandong 250014, China

a r t i c l e i n f o

Article history:

Received 10 October 2017

Revised 31 January 2018

Accepted 11 March 2018

Available online 20 March 2018

Keywords:

Clustering

Shared nearest neighbor

Density peaks

Fast search clustering

Local density

a b s t r a c t

Clustering by fast search and find of density peaks (DPC) is a new clustering method that

was reported in Science in June 2014. This clustering algorithm is based on the assumption

that cluster centers have high local densities and are generally far from each other. With a

decision graph, cluster centers can be easily located. However, this approach suffers from

certain disadvantages. First, the definition of the local density and distance measurement

is too simple; therefore, the DPC algorithm might perform poorly on complex datasets that

are of multiple scales, cross-winding, of various densities, or of high dimensionality. Sec-

ond, the one-step allocation strategy is not robust and has poor fault tolerance. Thus, if a

point is assigned incorrectly, then the subsequent allocation will further amplify the er-

ror, resulting in more errors, which will have a severe negative impact on the clustering

results. Third, the cutoff distance d c is generally difficult to determine since the range of

each attribute is unknown in most cases. Even when being normalized or using the rela-

tive percentage method, a small change in d c will still cause a conspicuous fluctuation in

the result, and this is especially true for real-world datasets. Considering these drawbacks,

we propose a shared-nearest-neighbor-based clustering by fast search and find of density

peaks (SNN-DPC) algorithm. We present three new definitions: SNN similarity, local den-

sity ρ and distance from the nearest larger density point δ. These definitions take the

information of the nearest neighbors and the shared neighbors into account, and they can

self-adapt to the local surroundings. Then, we introduce our two-step allocation method:

inevitably subordinate and possibly subordinate. The former quickly and accurately recog-

nizes and allocates the points that certainly belong to one cluster by counting the number

of shared neighbors between two points. The latter assigns the remaining points by finding

the clusters to which more neighbors belong. The algorithm is benchmarked on publicly

available synthetic datasets, UCI real-world datasets and the Olivetti Faces dataset, which

are often used to test the performance of clustering algorithms. We compared the results

with those of DPC, fuzzy weighted K-nearest neighbors density peak clustering (FKNN-

DPC), affinity propagation (AP), ordering points to identify the clustering structure (OP-

� The source code of this paper is available at https://github.com/liurui39660/SnnDpc
∗ Corresponding author at: School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong 250358, China.

E-mail addresses: xxliuruiabc@163.com (R. Liu), wanghong106@163.com (H. Wang).

https://doi.org/10.1016/j.ins.2018.03.031

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.03.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.03.031&domain=pdf
https://github.com/liurui39660/SnnDpc
mailto:xxliuruiabc@163.com
mailto:wanghong106@163.com
https://doi.org/10.1016/j.ins.2018.03.031

R. Liu et al. / Information Sciences 450 (2018) 200–226 201

TICS), density-based spatial clustering of applications with noise (DBSCAN), and K-means.

The metrics used are adjusted mutual information (AMI), adjusted Rand index (ARI), and

Fowlkes–Mallows index (FMI). The experimental results prove that our method can rec-

ognize clusters regardless of their size, shape, and dimensions; is robust to noise; and is

remarkably superior to DPC, FKNN-DPC, AP, OPTICS, DBSCAN, and K-means.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Clustering, also known as unsupervised classification, divides objects into subsets or clusters according to the similarity

measure of the object (physical or abstract) such that the objects within the cluster have a high degree of similarity and that

the objects belonging to different clusters have a high degree of dissimilarity [36] . Cluster analysis plays an important role

in the fields of social sciences, psychology, biology, statistics, pattern recognition and information retrieval as an important

basis for other problems.

Cluster analysis is a challenging problem in data mining and machine learning. Over the past few decades, a number of

clustering algorithms have been developed for different types of applications. Typical algorithms include K-means [25] and

K-medoids [23] based on partitioning, CURE [18] and BIRCH [45] based on hierarchy, DBSCAN [11] and OPTICS [2] based

on density, WaveCluster [30] and STING [41] based on grids, statistical clustering [8] based on models, and spectral cluster-

ing [39] based on graph theory. In recent years, with the advancements in cluster analysis, some new clustering methods,

such as subspace clustering [1] , ensemble clustering [35] , and deep embedded clustering [43] , have been proposed. The per-

formances of these algorithms are different. The classical K-means clustering algorithm achieves good clustering results on

datasets with convex spherical structures. Although DBSCAN provides good clustering results on irregular clusters and coiled

clusters and has a strong anti-noise capability, for variable-density clusters and high-dimensional data, the clustering result

is poor [36,42] . Moreover, selecting the radius and threshold also represents a difficult problem for DBSCAN.

In June 2014, Rodriguez et al. reported the DPC algorithm (clustering by fast search and find of density peaks) [28] in

the well-known scientific journal Science. DPC is a new clustering algorithm based on density and distance. Compared with

traditional clustering algorithms, the DPC algorithm has many advantages, including the following:

1. The algorithm is simple and efficient, and it can quickly find the high density peak point (cluster center) without itera-

tively calculating the objective function.

2. The DPC algorithm is suitable for cluster analysis on large-scale data.

Because of the above advantages, in a short period of three years, the DPC algorithm has become widely used in com-

puter vision [32] , image recognition [7] , text mining [46] and other fields.

Although the DPC algorithm has obvious advantages over other clustering algorithms, it has the following shortcomings:

1. The definition of the local density and distance measurement is too simple; therefore, the clustering result of the DPC

algorithm might be poor when working with complex datasets that are of multiple scales, cross-winding, of various

densities, or of high dimensions.

2. The allocation strategy is sensitive and has poor fault tolerance. Thus, if a point is assigned incorrectly, then the subse-

quent allocation will further amplify the error, resulting in more errors that will have a serious negative impact on the

clustering results.

3. The cutoff distance, d c , is generally difficult to determine since the range of each attribute is unknown in most cases.

Moreover, even if being normalized or using the relative percentage method, a small change in d c will still cause a

conspicuous fluctuation in results.

To solve the above problems, this paper proposes the shared-nearest-neighbor-based clustering by fast search and find

of density peaks (SNN-DPC) algorithm. The main innovations of the SNN-DPC algorithm include the following:

1. A similarity measurement based on shared neighbors is proposed. This criterion can be used to calculate the similarity

between points according to the shared neighbor information.

2. A local density metric of points based on shared neighbors is proposed. This criterion can be applied not only to simple

datasets but also to complex datasets that are of multiple scales, cross-winding, of various densities, or of high dimen-

sions.

3. An adaptive metric of distance from the nearest larger density point is proposed. This metric can be adjusted according

to the local density information to ensure that the correct points are more easily chosen as the centroid.

4. A novel and fast density peak clustering algorithm based on the new density and similarity measure is proposed. This

algorithm can quickly and accurately find the density peak (center) of each cluster.

5. A two-step point allocation algorithm based on shared neighbors is proposed to improve the probability that the non-
central points are correctly allocated and to avoid further errors when a point is incorrectly assigned.

202 R. Liu et al. / Information Sciences 450 (2018) 200–226

The remainder of this paper is organized as follows. In Section 2 , we introduce the research progress related to DPC

algorithm. In Section 3 , we introduce the basic definitions and processes of the traditional DPC algorithm and reveal some

problems within them. In Section 4.1 , we propose an effective similarity metric based on shared neighbors to find the

hidden structural information and improve the distance measurement between points. In Section 4.2 , we propose the SNN-

DPC clustering algorithm and point allocation algorithm based on shared neighbors. In Section 5 , we compare the SNN-DPC

algorithm with other classical clustering algorithms. The results demonstrate that the SNN-DPC algorithm can highlight the

feature of the cluster centers and correctly allocate the non-central points. In Section 6 , we will discuss the argument of the

SNN-DPC algorithm, the sensitivity of the case order, and the time consumption. In Section 7 , we summarize the advantages

and disadvantages of the SNN-DPC algorithm and point out the direction of our future research.

2. Related works

Clustering analysis is an active field in data mining research, and scholars have proposed many clustering algorithms.

These clustering algorithms can be divided into partitioning methods, density-based methods, graph-based methods, hierar-

chical methods, grid-based methods, model-based methods, propagation-based methods and deep learning methods.

Proposed in 2014, the DPC algorithm is a new clustering method based on density and distance [28] .

The research on the DPC clustering algorithm over the past three years primarily concerns the following aspects:

The first aspect is improving the density measure of the DPC algorithm.

Xie proposed a density peak searching and point assigning algorithm based on the fuzzy weighted K-nearest neighbor

(FKNN-DPC) [42] technique to solve the problem of the non-uniformity of point density measurements in the DPC algorithm.

This method uses K-nearest neighbor information to define the local density of points and to search and discover cluster

centers.

Mehmood presented a non-parametric method for DPC via heat diffusion [26] for estimating the probability distribution

of a given dataset. Based on heat diffusion in an infinite domain, this method accounts for both the selection of the cutoff

distance and the boundary correction of the kernel density estimation.

Du proposed density peak clustering based on K-nearest neighbors (DPC-KNN) [10] , which introduces the concept of K-

nearest neighbors (KNN) to DPC and provides another option for computing the local density. Note that although the names

DPC-KNN and FKNN-DPC are similar, there is no direct relation between these methods.

The second aspect is to automatically determine the numbers of clusters and cluster centers.

In [22] , Ju considered that the results obtained through the normalized local density and distance from the nearest larger

density point reflect the true characteristics of the data.

Li proposed an automatic clustering algorithm for determining the density of clustering centers [24] . In this algorithm,

it is considered that if the shortest distance between a potential cluster center and a known cluster center is less than the

cutoff distance d c , then the potential cluster center is a redundant center. Otherwise, it is regarded as the actual center of

another cluster.

Xu proposed a density-peak-based hierarchical clustering method (DenPEHC) [44] . This method generates clusters directly

on each possible clustering layer; it also introduces a grid granulation framework to help DenPEHC work with large-scale

and high-dimensional datasets.

The third aspect is the application of the DPC algorithm.

Zhong proposed an improved density and distance-based clustering approach [47] to evaluate the performance of EAM.

This approach simplifies the current evaluation method such that the commitment in terms of resources for manual data

analysis and performance ranking can be significantly reduced.

In [32] , Shi et al. applied the DPC algorithm to scene image clustering. In [7] , Chen et al. used the DPC algorithm to

obtain a possible age estimate based on a face image. In [46] , Zhang et al. utilized the density peak clustering algorithm

to extract multi-document abstracts. In [40] , Wang et al. applied the DPC algorithm and information entropy to detect and

remove the noise data field from datasets.

Huang et al. proposed an application of the density peak clustering method [19] to explore the community structure in

the network, which detects community centers and performs expansion corresponding to different communities.

Shi et al. introduced clustering methods based on fast search and peak density discovery [31] into overlapping community

partitioning problems. By defining a new distance matrix algorithm to overcome the defects of the integer adjacency matrix

and describe the possibility of each point belonging to different clusters, the overlapping community was achieved.

3. DPC algorithm and analysis

3.1. Notations

Table 1 presents the major symbols and notations used in the following parts.

R. Liu et al. / Information Sciences 450 (2018) 200–226 203

Table 1

Notations in traditional DPC and SNN-DPC.

Symbol Meaning

n The number of records in the dataset X

m The actual number of clusters in the dataset X

k The argument of how many neighbors will be considered

ρ = (ρ1 , . . . , ρn) The local density

δ = (δ1 , . . . , δn) The distance from larger density point

γ = (γ1 , . . . , γn) The decision value, the element-wise product of ρ and δ

X = (x 1 , . . . , x n) The dataset with x i as its i -th data point

�(i) = (x 1 , . . . , x k) The set of K-nearest neighbors of point i

L (i) = (x 1 , . . . , x k) The set of k points with the highest similarity to point i

SN N (i) = (x 1 , . . .) The set of shared nearest neighbors of point i ; may be an empty set

D = { d i j } The distances of the pairs of data points in X

Sim (i, j) The SNN similarity between points i and j

3.2. DPC algorithm

Rodriguez et al. presented their DPC algorithm in the journal Science in 2014. DPC is a new clustering algorithm based

on density and distance. This algorithm has its basis on the assumptions that cluster centers are surrounded by neighbors

with lower local density and that they are at a relatively larger distance from any points with a higher local density. There

are two important metrics to describe each data point i : its local density ρ i and its distance from the nearest larger density

point δi .

The DPC algorithm provides two methods for calculating the local density for a data point: the cutoff distance method

and the kernel distance method. For a data point i , its local density ρ i is expressed in Eq. 1 with the cutoff distance method

and in Eq. 2 with the kernel distance method.

ρi =

∑

i � = j
χ(d i j − d c) , χ(x) =

{
1 , x < 0

0 , x ≥ 0

(1)

ρi =

∑

i � = j
exp

[

−
(

d i j

d c

)2
]

(2)

where d ij is the Euclidean distance between data points i and j. d c > 0, the cutoff distance, is the neighborhood radius of a

point, which is set by the user. Thus, the local density ρ i is positively correlated to the number of points with a distance

from i of less than d c . The most obvious difference between the two methods is that for Eq. 1 , ρ i is a discrete value, whereas

for Eq. 2 , it is a continuous value.

According to Eqs. 1 and 2 , ρ i is sensitive to d c , but [28] indicates that for large datasets, the influence of d c is relatively

small and vice versa.

Subsequently, DPC defines δi as in Eq. 3 .

δi = min

j: ρ j >ρi

(d i j) (3)

As shown in 3 , δi is the minimum distance between point i and another point j whose ρ j is higher than ρ i . Moreover,

for point i with the highest ρ i , its δi is conventionally defined as Eq. 4 .

δi = max
i � = j

(δ j) (4)

As shown in Eqs. 3 and 4 , the points that are local or global maxima with respect to ρ i have the maximum δi .

Meanwhile, to simplify the selection of the cluster centers, DPC computes the decision value γ i for each data point i .

Eq. 5 presents the definition of γ i .

γi = ρi × δi (5)

According to [28] , the DPC clustering process is divided into two steps: finding the density peaks, i.e., the cluster centers,

and assigning the remaining points to their corresponding clusters.

In step one, DPC first computes the tuple (ρ i , δi) for each point i . Then, these tuples are used to obtain the decision

graph, where the X axis is ρ i and the Y axis is δi . Next, the points with relatively high ρ i and δi values are chosen as

centers.

In step two, after the cluster centers are chosen, each remaining point will be assigned to the cluster to which its nearest

neighbor of higher density belongs. This information is obtained during the calculation of δi .

In addition, similar to other density-based clustering methods, DPC also divides points into three types: boundary points,

core points and noise points. The border region for each cluster is the set of points that belong to this cluster, but their

204 R. Liu et al. / Information Sciences 450 (2018) 200–226

Fig. 1. Results of the traditional DPC algorithm on the Jain dataset.

distances from points in other clusters are smaller than the cutoff distance d c . The highest ρ i within the border region of a

cluster is denoted as ρb . Any point i of the cluster is considered to be the core point if ρ i ≥ρb , and the other points are the

cluster halo, which can be regarded as noise, including the points in the border region.

3.3. Analysis

Although the experimental results obtained with DPC have shown that it can perform well in many instances, the fol-

lowing drawbacks are obvious.

3.3.1. Various densities

Fig. 1 shows the best clustering results of the DPC algorithm with two types of distance measurements on the classic

Jain dataset. As shown in this figure, there are clearly two clusters with different densities in the Jain dataset: the left upper

branch with low density and the lower right branch with high density. However, as shown, regardless of the cutoff distance

or the kernel distance, the cluster centers are chosen in only one cluster, thus resulting in misclassification.

We can perform a further analysis from Fig. 2 , which shows the ρ value and the δ value of each data point using the

kernel distance. As shown, the ρ values of half of the points in the high-density cluster are greater than those of the points

in the low-density cluster, including its true cluster center, denoted as C. Meanwhile, it can also be observed that the value

of δA is considerably larger than that of δC . The value of δA is the distance from point A to point B, which are the top-2

highest densities in the lower right branch, and the value of δC is the distance from point C to its nearest point with a larger

density. Thus, all the points in the upper branch are at a disadvantage in terms of ρ and δ simultaneously, thereby making

it impossible to find an appropriate cluster center in the upper branch, resulting in two cluster centers being selected in the

high-density branch, that is, the lower right branch.

From the above example, it is easy to find that, irrespective of which distance measurement is used, the DPC algorithm

may not be able to choose the correct cluster center for datasets with variable densities. This is because the measurements

of the distance and density are not reasonable without considering the influence of the neighborhoods of the points. On the

one hand, the points in the clusters with low density often have very small ρ values. Even large δ values cannot effectively

improve their status in the decision graph. On the other hand, the points in high-density branches tend to have higher ρ
values, and their δ values are also usually high since branches are generally far from each other. Therefore, these points are

easier to be chosen as cluster centers than those in low-density clusters. Consequently, DPC can easily choose an incorrect

point as the cluster center, which leads to incorrect clustering results.

3.3.2. Allocation strategy

Fig. 3 presents the result on the classic Pathbased dataset, where two clusters are surrounded by a ring-shaped cluster.

This figure clearly shows that the DPC algorithm can correctly find three cluster centers with both distance measurements:

the cutoff distance and the kernel distance. However, there are some differences between these distance measurements. We

take the result of the kernel distance as an example. The points are assigned to the correct cluster in the initial allocation

R. Liu et al. / Information Sciences 450 (2018) 200–226 205

Fig. 2. ρ and δ values of the result of the traditional DPC algorithm on the Jain dataset.

Fig. 3. Results of the traditional DPC algorithm on the Pathbased dataset.

process. However, the points on both sides of the ring are assigned to incorrect clusters because they are closer to the

centers of the other two clusters. Additionally, due to DPC’s one-step allocation strategy, if one of these points is assigned

to an incorrect cluster, then the following points with lower ρ values may also be assigned to incorrect clusters, thereby

producing catastrophic clustering results. This fact is also the same under the cutoff distance measurement.

Thus, irrespective of which distance measurement is used, for non-convex datasets, the DPC algorithm may not assign the

non-center points to the correct cluster. This is because the DPC algorithm assigns every remaining point to the same cluster

as its nearest neighbor with higher density in one step. This one-step allocation strategy does not take the neighborhood

information into account. When a point is assigned to an incorrect cluster, the subsequent allocation of the points will be

misled, resulting in a large allocation error.

206 R. Liu et al. / Information Sciences 450 (2018) 200–226

To solve the above problems of the DPC algorithm, a density peak clustering algorithm based on shared nearest neighbors

(SNN-DPC) is proposed. The SNN-DPC algorithm introduces the concept of shared nearest neighbors (SNN) [21] to improve

the definitions of distance, local density ρ and distance from the nearest larger density point δ to handle the problems

that arise from not considering the influence of the neighborhoods. Because the ρ and δ defined by the SNN-DPC algo-

rithm reflect the local features of the datasets, they can reflect the natural structure of the data. Therefore, the SNN-DPC

algorithm can improve the clustering results on complex datasets such as multi-scale, cross-winding, variable-density and

high-dimensional datasets. Simultaneously, the SNN-DPC algorithm retains most of the advantages of the DPC algorithm.

4. SNN-DPC Algorithm

In this section, we present a detailed description of the SNN-DPC algorithm. First, we define the similarity and the density

based on shared neighbors. Then, we propose the improved SNN-DPC algorithm, which includes the density peak discovery

algorithm and the point allocation algorithm. Finally, we present the analysis of the time and space complexities of the

SNN-DPC algorithm.

4.1. Definitions

The DPC algorithm may not produce satisfactory results on some complex datasets because the DPC algorithm directly

calculates the distance and density between points but does not focus on the environment in which the points are located.

However, the majority of neighbors of a point typically still belong to the same cluster, and this fact can be used to define

a more appropriate proximity measurement. Thus, we introduce an indirect distance and density measurement method that

considers the effects of points’ neighbors. Our approach draws on the concept of shared neighbors to characterize the local

density of points and the distance between them.

The basic idea of SNN is that two points are considered more similar if they have more common neighbors. This can be

represented by Eq. 6 .

Definition 1 (Shared Nearest Neighbors) . For any points i and j in dataset X , the set of K-nearest neighbors of point i is �(i),

and the set for j is �(j); the shared neighbors of point i and point j are their common neighbor sets, expressed as

SN N (i, j) = �(i) ∩ �(j) (6)

Definition 2 (SNN Similarity) . According to the above basic idea, we first present the formula of the SNN similarity.

For any points i and j in dataset X , their SNN similarity is defined as

Sim (i, j) =

⎧ ⎪ ⎨

⎪ ⎩

| SN N (i, j) | 2 ∑

p∈ SN N (i, j)

(d ip + d jp)
, if i, j ∈ SN N (i, j)

0 , otherwise

(7)

where d is the distance between points i and j . The SNN similarity is calculated only when point i and point j appear in

each other’s K-neighbor sets. Otherwise, the SNN similarity between point i and point j is 0.

The non-zero part of Eq. 7 can be expressed in the form of Eq. 8 , from which the meaning of SNN similarity can be

clearly observed.

Sim (i, j) = | SN N (i, j) | × 1

1

| SN N (i, j) |
∑

p∈ SN N (i, j)

(d ip + d jp)

(8)

The left part of the equation represents the number of shared neighbors of points i and j . The right part is the reciprocal

of the mean value of the distance from points i and j to all their shared neighbors, which represents the density around the

two points to a certain extent. By examining the shared neighbors and the density of the two points simultaneously, SNN

similarity can better adapt to a variety of environments.

After defining the SNN similarity of any two points, we use this similarity to calculate the local density ρ i of point i .

Definition 3 (SNN Local Density) . Let point i be any point in dataset X and L (i) = { x 1 , x 2 , . . . , x k } be the set of k points with

the highest similarity to point i . Then, the local density of point i is defined as the sum of the similarity of k points with

the highest similarity to point i . The equation for the local density is as follows:

ρi =

∑

j∈ L (i)

Sim (i, j) (9)

The local density ρ i of point i has the following properties:

1. When k is small, the number of shared neighbors between point i and one of its neighbors j is smaller, and the distance

from point j to point i is closer; thus, k reflects the neighborhood and local density within a smaller neighborhood of

i . In contrast, when k is large, it reflects a larger neighborhood of i . Since the distance between points in a low-density

cluster is large, changes in k will have a greater impact on low-density clusters.

R. Liu et al. / Information Sciences 450 (2018) 200–226 207

2. When | SNN (i, j)| is constant, if the distance from i and j to each of their shared neighbors is small, that is,∑

p∈ SN N (i, j) (d ip + d jp) is small, then ρ i is larger. In other words, if the distance between i and j is small and the dis-

tance from each shared neighbor point to i and j is also small, then the density of point i is large. It can be observed

that closer points in space contribute more to ρ i .

3. When

∑

p∈ SN N (i, j) (d ip + d jp) is constant, if the number of shared neighbors is large between i and j , that is, | SNN (i, j)| is

large, then ρ i is larger. In other words, if most points around i are of the same cluster, then the density of i is larger. It

is clear that points belonging to the same cluster contribute more to ρ i .

In general, the local density ρ not only utilizes the distance information but also obtains information about the cluster

structure through the number of SNNs. It fully uncovers the intrinsic relationship between points.

For the distance from the nearest larger density point δ, we add a compensation mechanism based on proximity distance;

thus, it may also be high for δ values of points in low-density clusters.

Definition 4 (Distance from Nearest Larger Density Point) . Let point i be any point in dataset X ; find a point j whose local

density is larger than i . Then, minimize the distance between i and j multiplied by the distance from i and j to their K-

nearest neighbors; take this as the δ value of point i . The equation for δ is as follows:

δi = min

j: ρ j >ρi

[

d i j

(∑

p∈ �(i)

d ip +

∑

q ∈ �(j)

d jq

)]

(10)

The δ value of the point with the highest local density is the largest δ value among the other points, as shown in Eq. 11 .

δi = max
j∈ (X−i)

(δ j) (11)

The δ value has the following properties:

1. When k increases, the number of nearest neighbors between i and j will increase, and the distances from i and j to their

neighbors will also increase, ultimately causing an increase in d i j (
∑

p∈ �(i) d ip +

∑

q ∈ �(j) d jq) . However, the effect of the

increase varies; for clusters of low density, it is notable, whereas for clusters of high density, the impact is much more

slight.

2. When d ij is constant, if the distance from i and j to their respective k neighbors is large, then the value of

d i j (
∑

p∈ �(i) d ip +

∑

q ∈ �(j) d jq) is larger; then, the δi value of the candidate is larger. In other words, if the neighbors

of i and j are far from them, there will be a higher compensation for the low density and vice versa. In this way, the

center of the low-density cluster is more easily found from the decision graph.

3. When

∑

p∈ �(i) d ip +

∑

q ∈ �(j) d jq is constant, if the distance between the points i and j is large, then d i j (
∑

p∈ �(i) d ip +∑

q ∈ �(j) d jq) is larger; thus, the candidate δi value is larger. This is based on the assumption that the “distance between

cluster centers is relatively large” in traditional DPC. In other words, if a point is close to the nearest larger density point,

then the point has a low probability of being a cluster center.

In summary, the distance from a larger density point δ not only determines the distance factor but also considers the

neighbor information of each point, which compensates for the point in the low-density cluster and enhances the fairness

of the δ value.

For traditional DPC, although [28] has been the subject of many experiments to demonstrate its performance, there are

still shortcomings. The traditional DPC algorithm only relies on the distance between points (cutoff distance or Gaussian

kernel function distance) to calculate the local density; neither the nearest neighborhood information nor shared neigh-

borhood information is considered. Although this density measurement method allows the DPC algorithm to achieve good

performance on some simple datasets, it cannot adequately reflect the complex relationship between points. Thus, it cannot

find the real cluster structure implicit in the data or provide satisfactory results when addressing large differences in cluster

density, which makes the traditional DPC algorithm suffer from poor performance on datasets that are of multiple scales,

cross-winding, high dimensionality, significantly different in terms of cluster density, or of other complicated features.

For SNN-DPC, the sum of the distances from points of a low-density cluster to their K-neighbors may be large; thus, they

receive greater compensation for their δ value. Fig. 4 a and 4 b show the results of SNN-DPC on the Jain dataset. Compared to

Fig. 2 b, the δ values of points in the upper branch are generally larger than those of the lower branch. This is because the

density of the upper branch is significantly smaller and because the distances from the points to their respective k neighbors

are larger; thus, they receive greater compensation. Even if the density is at a disadvantage, the higher δ value still makes

the center of the upper branch distinguished in the decision graph.

Next, we present the definition of the decision value γ , which remains unchanged from the traditional DPC algorithm.

Definition 5 (Decision Value) . Let point i be any point in point set X ; then, the decision value γ i is the product of the local

density ρ i and the distance from the nearest larger density point δi . The formula is shown in Eq. 12 .

γi = ρi × δi (12)

The role of the γ value is to assist in manually selecting the cluster center point; a larger γ value means larger ρ and δ
values, which suggest that the point is more likely to be a cluster center.

208 R. Liu et al. / Information Sciences 450 (2018) 200–226

Fig. 4. Result and δ value of SNN-DPC algorithm on the Jain dataset.

In the next section, we will introduce the main process of the SNN-DPC algorithm. The SNN-DPC algorithm refers to

the concepts of “inevitable subordinate point” and “possible subordinate point”, and for convenience, we will present the

definitions here.

Definition 6 (Inevitable Subordinate Point) . Assume that point A has been assigned to a cluster and that point B has not yet

been assigned; then, B is an inevitable subordinate point of cluster of A if and only if it satisfies

|{ p| p ∈ �(A) ∩ p ∈ �(B) }| ≥ k/ 2 (13)

Specifically,

| SN N (A, B) | ≥ k/ 2 (14)

In other words, if points A and B are considered to belong to the same cluster, at least half of their respective k neigh-

borhoods are shared with both.

Fig. 5 intuitively explains the emergence of this equation, where A is assigned and B is not, and l A and l B are two lines

vertical to segment AB . We assume that k = 10 and that all points are distributed uniformly. In Fig. 5 a, both A and B have 10

points as neighbors, among which 5 are shared by both. The intersection of the neighborhoods of A and B is not an empty

set, indicating that A and B are close enough to be considered within the same cluster. For Fig. 5 b, the situation is quite the

opposite. There are many points intermediate between A and B , but the intersection of the neighborhoods of A and B is an

empty set, which indicates that A and B are far from each other and may not be considered within the same cluster.

If an unallocated point does not satisfy the condition of inevitable subordination, we call it a possible subordinate point,

and we provide the following definition:

Definition 7 (Possible Subordinate Point) . Assume that point A has been assigned to a cluster and that point B has not yet

been assigned; then, B is a possible subordinate point of cluster of A if and only if it satisfies

0 < |{ p| p ∈ �(A) ∩ p ∈ �(B) }| < k/ 2 (15)

Specifically,

0 < | SN N (A, B) | < k/ 2 (16)

In addition to the differences in definition, another difference between inevitable and possible subordinate points is that,

under non-extreme cases, each point is able to possibly be subordinate to multiple clusters at the same time, whereas they

can be inevitably subordinate to only one cluster.

However, in an extreme case, a point may be inevitably subordinate to two clusters simultaneously. This case will occur

only when all the following conditions are met:

1. The argument k is an even number

2. Two points A and A are assigned to different clusters
1 2

R. Liu et al. / Information Sciences 450 (2018) 200–226 209

Fig. 5. Explanation of inevitable subordinate points.

3. One point B remains to be assigned

4. Satisfying Eq. 17

|{ p| p ∈ �(A 1) ∩ p ∈ �(B) }| = k/ 2

|{ p| p ∈ �(A 2) ∩ p ∈ �(B) }| = k/ 2

(17)

This circumstance may occasionally partially affect the clustering result. To avoid it, we present some simple but useful

methods here:

1. Using odd k argument only

2. When it occurs, temporarily add 1 to k , making it an odd number

3. Assigning B to one of them according to the distance from them

4. Assigning B to one of them according to the distance from their centers.

Apart from them, other complicating methods, such as introducing the concept of fuzzy clustering, also contribute to this

situation, and we may consider them in our future works.

Note that for convenience, if the point is not inevitably subordinate to any cluster, we refer to it as a possible subordinate

point without specifying the cluster.

4.2. Processes

In the process of the algorithm, SNN-DPC follows the basic idea of the traditional DPC algorithm, but the key steps

are improved. The overall process is still divided into three steps: calculation of ρ and δ, selection of cluster centers and

allocation of non-central points. The detailed algorithm process is shown below.

210 R. Liu et al. / Information Sciences 450 (2018) 200–226

Algorithm 1 SNN-DPC.

Require: dataset X = { x 1 , x 2 , . . . , x n } (n is the number of entries), number of neighbors k

Ensure: result of clustering � = { C 1 , C 2 , . . . , C m

} (m is the number of clusters)

1: Initialize dataset X (normalization, etc.)

2: Calculate distance matrix D

n ×n = { d i j } n ×n

3: Calculate similarity matrix according to Eq. 7

4: Calculate local density ρ according to Eq. 9

5: Calculate distance from nearest larger density point δ according to Eqs. 10 and 11

6: Calculate decision value γ according to Eq. 12, sort it in ascending order and record the new order of all elements

7: Construct a ρ − δ decision graph or γ graph; points in the former are represented as (ρi , δi) , and points in the latter

are represented as (i, γi) , where γi is the sorted array obtained from the previous step

8: Select point(s) of large ρ and δ values in the ρ − δ decision graph or select point(s) of large γ value in the γ graph as

cluster centers

9: Apply Algorithm 2 to allocate inevitable subordinate points

10: Apply Algorithm 3 to allocate possible subordinate points

Algorithm 2 Allocation of Inevitable Subordinate Points.

Require: set of centers C ent er = { c 1 , c 2 , . . . , c m

} , number of neighbors k , distance matrix D

n ×n = { d i j } n ×n

Ensure: preliminary results � = { C 1 , C 2 , . . . , C m

}
1: Initialize queue Q , push all points of C ent er into Q

2: while Q is not empty do

3: Pop a point this at Q ’s head

4: for all this ’s unallocated neighbor point next do

5: if next does not belong to any cluster and satisfies | SN N (this, next) | ≥ k/ 2 then

6: Allocate next to the cluster of this

7: Push next to the tail of Q

8: end if

9: end for

10: end while

Line 9 of the SNN-DPC algorithm refers to the allocation algorithm of inevitable subordinate points, and Eqs. 13 and

14 define the criteria of inevitable subordinate points. To allocate inevitable subordinate points, the algorithm uses a

breadth-first search, starting from one of the cluster centers and then observing its K-nearest neighbor points in turn. If

the number of SNNs is larger than half of k , then the observed point is considered subordinate to the cluster of the current

point, and it is pushed into the queue so that we can observe its neighbors in the next few turns. Algorithm 2 describes the

entire process.

Line 10 of the SNN-DPC algorithm refers to the allocation algorithm of possible subordinate points, and Eqs. 15 and

16 define the criteria of possible subordinate points. To allocate possible subordinate points, the algorithm traverses all

unallocated points and counts the number of neighbors belonging to each cluster to form an allocation matrix. After this,

the algorithm looks for the maximum in the matrix and traverses the matrix again, assigning the points represented by

the row where the maximum is to the cluster represented by the column. When the traversal is completed, the recognition

matrix will be updated and the process will repeat again until the remaining points are allocated. Algorithm 3 describes the

entire process.

Using the two-step allocation strategy of “inevitable subordinate points” and “possible subordinate points”, as many

points as possible are allocated to the correct clusters.

If two points are inevitably subordinate to the same cluster, then they should be close in space. However, if we only

take distance as the criterion, it will be susceptible to the randomness of the point distribution. Fig. 6 shows an example

to illustrate the advantage of our allocation strategy, where the width and height of each grid are 1, and we assume that

the distance between A and B is slightly less than 1. When allocating B , since the nearest point to B is A , according to the

traditional DPC’s one-step allocation strategy, B will be incorrectly assigned to the red cluster. Moreover, if B 1 , B 2 , etc. are

not yet allocated, then in the subsequent allocation, they will all be assigned to the red cluster because of the misclassifica-

tion of B . However, for Algorithms 2 and 3 , we assume that k = 4 ; then, there are �(A) = { A, A 1 , A 2 , A 3 } , �(B) = { B, A, B 1 , B 2 }
and SN N (A, B) = { A } . Since | SNN (A, B)| < k /2, B will not be considered inevitably subordinate to the red cluster. During the

allocation of possible subordinate points, in the recognition matrix recog , since �(B) = { B, A, B 1 , B 2 } , the value of the column

corresponding to the red cluster is 1, but the value of the blue cluster is 2; therefore, B will be classified into the blue clus-

ter, which is the correct result. Compared with the traditional DPC algorithm, this method can address clusters of different

shapes more flexibly.

R. Liu et al. / Information Sciences 450 (2018) 200–226 211

Algorithm 3 Allocation of Possible Subordinate Points.

Require: number of neighbors k , preliminary clustering results � = { C 1 , C 2 , . . . , C m

}
Ensure: final clustering results � = { C 1 , C 2 , . . . , C m

}
1: while not all points are allocated do

2: Find all unallocated points and re-number them

3: Form an allocation matrix M whose rows correspond to unallocated points and columns correspond to clusters

4: for all unallocated point p do

5: for all neighbor point q of point p do

6: +1 to the column corresponding to the cluster that q belongs in the p-th row

7: end for

8: end for

9: Find the max value most in M

10: if most > 0 then

11: Record the rows and columns that most appears as Row = { r 1 , r 2 , . . . , r i } and Col = { c 1 , c 2 , . . . , c i }
12: Allocate the r i -th point to the c i -th cluster

13: else

14: k = k + 1

15: end if

16: end while

Fig. 6. Example of the advantage of allocating inevitable and possible subordinate points. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Traditional DPC algorithm uses the method of allocating the points to the cluster of the nearest larger density point

without taking the local information or the neighbor information into account. Moreover, since the allocation is performed

in descending order of density, it is easy to misclassify the points whose local densities are even higher than some centers. In

addition, since each assignment must refer to the previously assigned points, when a point is misclassified, the subsequent

points will amplify the error to form a chain error.

Fig. 7 a is the classic Pathbased dataset, where two clusters are surrounded by a ring-shaped cluster. Fig. 7 b clearly shows

that although the traditional DPC algorithm can find a cluster center on each of the three clusters, there is a serious devia-

tion in the allocation of non-center points. At first, the allocation is correct. However, since points are allocated in descend-

ing order of their local density, as shown in Fig. 7 b, points near the cluster B are of higher densities, thus they are assigned

to the cluster B in an early stage. When point C is to be assigned, the less dense cluster A has not extended to the vicinity

of C, which causes C to be incorrectly assigned to cluster B. This affects the subsequent allocation, all points that directly or

indirectly refer to C are allocated to the cluster of B, leading to the results shown in Fig. 7 a.

Using the allocation strategy shown in Algorithms 2 and 3 , the clustering results obtained from the same dataset as

in Fig. 7 a are shown in Fig. 7 c. Algorithm 2 applies a breadth-first search to ensure that the allocation is gradually ex-

tended from the center of each cluster to the surroundings, avoiding using points of other clusters as references. Moreover,

Algorithm 2 fully considers the neighbor information, and it allocates points only when the number of SNNs is greater than

k /2. Algorithm 3 also allocates points that are most likely to be correctly allocated and updates information while allo-

cating points. The allocation of each point in the entire process is cautious; more information is obtained to improve the

probability of being correctly assigned, thereby achieving satisfactory results.

212 R. Liu et al. / Information Sciences 450 (2018) 200–226

Fig. 7. Comparison between traditional DPC and SNN-DPC on Pathbased.

4.3. Analysis of complexity

4.3.1. Time complexity

In this part, we set the total number of points to n , the number of cluster centers to m , and the number of neighbors to

k .

According to the previous section, the detailed analysis of Algorithm 1 is as follows:

Line 1: the normalization needs to handle every point, that is, approximately O (n).

Line 2: calculating the distance matrix needs O (n 2).

Line 3: calculating the SNN similarity according to Eq. 7 . Since the algorithm needs to handle every pair of points,

the basic complexity is O (n 2). Calculating the intersection can be performed within O (k) using a hash table. Therefore, the

general complexity of this line is O (kn 2).

R. Liu et al. / Information Sciences 450 (2018) 200–226 213

Line 4 and line 5 calculate ρ and δ according to Eqs. 9 and 10 , respectively. The cost of δ is the same as in traditional

DPC: O (n 2). For ρ , the algorithm only needs to query the KNN information of each point, that is, O (kn). Thus, the complexity

of these two lines is O (kn 2).

Line 6: because of the sort, the complexity is O (n log n).

Line 7 and line 8 are plotting parts and are omitted.

Line 9: referring to the analysis of Algorithm 2 below, the complexity is O (mn 2).

Line 10: referring to the analysis of Algorithm 3 below, the complexity is O ((k + m) n 2) .

The overall time complexity of the SNN-DPC algorithm is O ((k + m) n 2) .

According to the previous section, the detailed analysis of Algorithm 2 is as follows:

Line 1: there are m centers; thus, the cost is O (m).

Line 2: the “while” loop provides O (n) in the worst case.

Line 4: the “for” loop provides O (n) in the worst case.

Line 5: the value of | SNN (this, next)| is obtained from Algorithm 1 ; thus, every time, the time cost is only O (1) to query.

Line 6 and line 7 are both O (1).

Overall, the time complexity of the “allocation of inevitable subordinate points” is O (mn 2).

According to the previous section, the detailed analysis of Algorithm 3 is as follows:

Line 1: in the worst case, all points are allocated in this algorithm; thus, it provides a multiplier O (n).

Line 2: it costs O (n) to scan all points.

Lines 4, 5 and 6: there are at most n unallocated points, and each of them has k neighbors; therefore, the general

complexity is O (kn).

Line 9: to find the maxima, the algorithm needs O (mn).

Lines 11 and 12: the algorithm needs to scan matrix M ; therefore, the time complexity is O (n).

The overall time complexity of Algorithm 3 is the basic loop O (n) multiplied by the highest complexity in the loop, that

is, O (kn) or O (mn); thus, the overall time complexity is O (kn 2) or O (mn 2), which can be merged as O ((k + m) n 2) .

Overall, we can conclude that the time complexity of the entire SNN-DPC algorithm is the larger of O (mn 2) and O (kn 2),

that is, O ((k + m) n 2) .

For the time complexity of the traditional DPC algorithm, the time for obtaining the distance between every pair of points

is O (n 2). The time to calculate the local density ρ i is O (n 2) since, for each point i , all other points need to be observed. The

time used to compute the distance δi is O (n 2) since it also requires evaluating all other points. Finally, the time complexity

of assigning non-center points is O (n) since this process is predefined when calculating δi . Thus, the time complexity of

traditional DPC is O (n 2).

However, both k and m are relatively small numbers compared with n . Therefore, they will not negatively affect the

running time to a great extent. We demonstrate that the actual running time of the SNN-DPC is no more than k times the

traditional DPC’s running time in Section 6.3 .

4.3.2. Space complexity

In this part, we set the total number of points to n , the number of cluster centers to m , and the number of neighbors to

k .

Apart from the original dataset, SNN-DPC needs to calculate a distance matrix and a similarity matrix, which have com-

plexities of O (n 2). Other data structures, such as the ρ and δ array, are all O (n).

For Algorithm 2 , the only data structure needed is a queue, which is O (n). Algorithm 3 requires a matrix, and in the

worst case, its complexity is O (mn).

The overall space complexity of SNN-DPC proposed in this article is the same as that of traditional DPC, which is O (n 2).

5. Experiment

To demonstrate the effectiveness of the SNN-DPC algorithm, we use classical synthetic datasets and real-world datasets to

test its performance. Moreover, we take FKNN-DPC [42] , traditional DPC [28] , DBSCAN [11] , OPTICS [2] , AP [14] and K-means

[25] as the control group, where the AP, DBSCAN and K-means algorithms are implemented in the sklearn library [27] of

Python and OPTICS is implemented in the pyclustering library. The DPC algorithm is based on the source code provided by

the author, but since our datasets do not contain noise, we remove the “Halo” part. For the FKNN-DPC algorithm, since we

cannot obtain the source code from the original author, we implement the process referring to [42] . All the results shown

are the optimal results after argument tuning.

The synthetic datasets and real-world datasets used in the experiments are presented in Table 2 and Table 3 , respectively.

Note that the Olivetti Faces dataset is an image dataset; thus, every pixel of the image is regarded as a single attribute.

5.1. Metrics, preprocessing and argument selection

Evaluating the performance of a clustering algorithm is not as trivial as counting the number of errors or the precision

and recall of a supervised classification algorithm. In particular, any evaluation metric should not take the absolute values of

the cluster labels into account. Rather, it should consider whether this clustering defines separations of the data similar to

214 R. Liu et al. / Information Sciences 450 (2018) 200–226

Table 2

Synthetic datasets.

Dataset Source No. of records No. of attributes No. of clusters

Aggregation [17] 788 2 7

Flame [16] 240 2 2

Jain [20] 373 2 2

Pathbased [5] 300 2 3

R15 [37] 600 2 15

Spiral [5] 312 2 3

D31 [37] 3100 2 31

DIM512 [13] 1024 512 16

S2 [15] 50 0 0 2 15

Table 3

Real-world datasets.

Dataset Source No. of records No. of attributes No. of clusters

Iris [3] 150 4 3

Wine [3] 178 13 3

WDBC [34] 569 30 2

Seeds [6] 210 7 3

Segmentation [3] 2310 19 7

Libras movement [9] 360 90 15

Ionosphere [33] 351 34 2

Waveform [4] 50 0 0 21 3

Waveform (noise) [4] 50 0 0 40 3

Ecoli [3] 336 8 8

Parkinsons [3] 197 23 2

Dermatology [3] 366 33 6

Balance Scale [3] 625 4 3

Spectrometer [3] 531 102 48

Olivetti faces [29] 400 92 × 112 40

some ground-truth set of classes or satisfies some assumption such that members that belong to the same class are more

similar than members of different classes according to some similarity metric.

Therefore, in this section, we will evaluate the clustering results using three evaluation indices that are independent of

the absolute values of labels: adjusted mutual information (AMI) [38] , adjusted Rand index (ARI) [38] and Fowlkes-Mallows

index (FMI) [12] . The upper bound of the three indicators is 1, where larger values indicate better clustering results

Before proceeding to the experiments, we need to preprocess the datasets to eliminate the influence of missing values

and differences in the ranges of different dimensions. In the subsequent algorithmic process, we will replace the missing

values with the mean of all valid values of the same dimension. For the difference in the range of values, we use the “min-

max normalization method” shown in Eq. 18 to process the data of each dimension of the data, mapping all the data linearly

to the range [0,1], therein eliminating the difference in dimensions and increasing the efficiency of the calculation.

x ′ i j =

x i j − min (x j)

max (x j) − min (x j)
(18)

where x ′
i j

is the re-scaled data in the i -th row and j -th column, x ij is the original data in the i -th row and j -th column, and

x j is the original data in the entire j -th column.

To more objectively reflect the actual results of various algorithms, we perform argument tuning on each of the algo-

rithms, thereby ensuring that their best performances are compared.

In detail, for the SNN-DPC and FKNN-DPC algorithms, since they have only one integer argument k , we select the ar-

gument continuously from 4 to 50. The lower bound is 4 because, for some datasets, a small k may lead the algorithm to

become endless and cause an error. For the upper bound, a large k fails to significantly affect the results of the algorithms,

making it less meaningful to be further tested.

The author of the traditional DPC algorithm provides a rule of thumb that one can choose d c to make the number of

neighbors be between 1 and 2% of the total number of points. We will modify this percentage to obtain its best results.

For the DBSCAN and OPTICS algorithms, they both have two arguments, ε and minpts . The former is a floating point

number, whereas the latter is an integer. Since all the datasets are normalized, we loop the ε from 0.01 to 1, with a step size

of 0.01; we loop minpts from 1 to 50. The reason for its upper bound is the same as SNN-DPC and FKNN-DPC. Additionally,

the OPTICS algorithm implemented in the pyclustering library allows users to specify the number of clusters; thus, we

always assign the correct cluster number to it.

The AP algorithm provides only one argument, which in the sklearn library is named “preference”. A large preference

allows the AP algorithm to choose more points as centers and vice versa. For the AP algorithm, no universal rule can be

R. Liu et al. / Information Sciences 450 (2018) 200–226 215

Table 4

Performances of different clustering algorithms on different synthetic datasets.

Algorithm AMI ARI FMI Arg- AMI ARI FMI Arg-

Aggregation Spiral

SNN-DPC 0.9500 0.9594 0.9681 15 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 5

FKNN-DPC 0.9775 0.9855 0.9886 20 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 5

DPC 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 3.4 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.8

DBSCAN 0.9529 0.9779 0.9827 0.04/6 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.04/2

OPTICS 0.9221 0.9753 0.9807 0.06/10 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.04/1

AP 0.7873 0.7658 0.8150 −1.21 0.2932 0.1569 0.3409 −0.19

K-Means 0.7935 0.7300 0.7884 7 −0.0055 −0.0060 0.3274 3

Flame D31

SNN-DPC 0.8975 0.9502 0.9768 5 0.9642 0.9509 0.9525 41

FKNN-DPC 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 6 0.9522 0.9275 0.9298 28

DPC 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 2.8 0.9554 0.9365 0.9385 0.6

DBSCAN 0.8234 0.9388 0.9712 0.09/8 0.8895 0.8078 0.8186 0.04/38

OPTICS 0.6898 0.8968 0.9508 0.10/8 0.8211 0.8673 0.8763 0.03/23

AP 0.4987 0.5403 0.7498 −6.36 0.8367 0.7425 0.7665 0.23

K-Means 0.3863 0.4534 0.7364 2 0.9593 0.9453 0.9470 31

Jain DIM512

SNN-DPC 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 12 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 5

FKNN-DPC 0.0562 0.1318 0.6430 10 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 20

DPC 0.6183 0.7146 0.8819 0.9 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.6

DBSCAN 0.8650 0.9758 0.9906 0.08/2 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.36/2

OPTICS 0.8542 0.9756 0.9905 0.08/1 0.9029 0.9432 0.9478 0.19/1

AP 0.6582 0.7952 0.9212 −1.77 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 −1.00

K-Means 0.4916 0.5767 0.8200 2 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 16

Pathbased S2

SNN-DPC 0.9001 0.9294 0.9529 9 0.9386 0.9264 0.9313 35

FKNN-DPC 0.8344 0.8744 0.9165 9 0.9180 0.8889 0.8963 22

DPC 0.5212 0.4717 0.6664 3.8 0.9437 0.9352 0.9395 1.5

DBSCAN 0.8710 0.9011 0.9340 0.08/10 0.8511 0.7485 0.7744 0.04/30

OPTICS 0.4364 0.6364 0.7517 0.06/4 0.6723 0.7713 0.7891 0.03/27

AP 0.5199 0.4775 0.6577 −4.10 0.4616 0.5704 0.6080 −3.06

K-Means 0.5098 0.4613 0.6617 3 0.9461 0.9379 0.9420 15

R15

SNN-DPC 0.9938 0.9928 0.9933 10

FKNN-DPC 0.9907 0.9892 0.9899 27

DPC 0.9938 0.9928 0.9933 0.6

DBSCAN 0.9825 0.9819 0.9831 0.04/12

OPTICS 0.9734 0.9785 0.9799 0.04/11

AP 0.9907 0.9891 0.9898 −0.17

K-Means 0.9938 0.9928 0.9932 15

used to select the parameters; thus, we set the upper limit of the argument search to several times the maximum similarity

and gradually narrow the search range.

The only argument of the K-means algorithm is the correct number of clusters; thus, we simply follow this instruction.

5.2. Synthetic datasets

In this part, we select a number of synthetic datasets that are widely used to test a variety of clustering algorithms. These

datasets are different in terms of the overall distribution and numbers of points and clusters. They can simulate different

situations to compare the performance of various clustering algorithms in different scenarios.

Table 4 shows the clustering results in terms of the AMI, ARI and FMI scores on all synthetic datasets listed in Table 2 .

For the K-means algorithm, the initial centers are chosen by the K-means++ method rather than a random process. Thus,

the results are the same for every run, and there is no need to provide the statistical results. The SNN-DPC, FKNN-DPC

and traditional DPC algorithms can visually find the centers of clusters through a decision graph or γ graph. However, in

many application scenarios, even if the user knows the exact number of clusters, the clustering algorithm still cannot obtain

the desired classification results. These three algorithms have their own methods for calculating the local density and the

nearest large density distance; thus, we directly specify the correct number of clusters. Then, we use the decision function

γ to automatically determine the clusters and test their performance in the absence of interaction. However, since there is

a large density difference in the Jain dataset, we manually choose centers from the decision graph rather than automatically

select them based on the γ values.

Next, we will present the clustering results of some datasets in the experiment. The points with different colors in the

figures are assigned to different clusters. Except for the DBSCAN and OPTICS algorithms, the cluster centers obtained from

other algorithms are represented by stars, while crosses indicate noise determined by the DBSCAN and OPTICS algorithms.

216 R. Liu et al. / Information Sciences 450 (2018) 200–226

Fig. 8. The clustering results on aggregation by 6 algorithms.

The clustering results in Fig. 8 show that the SNN-DPC, DPC, DBSCAN and OPTICS algorithms can detect clusters in the

Aggregation dataset, but the AP and K-means algorithms fail to do so. The SNN-DPC and DPC algorithms recognize both the

clusters and the centers. For the DBSCAN and OPTICS algorithms, although some points are marked as noise, the general

shapes of each cluster are correct. The AP algorithm successfully finds the correct number of clusters, but it chooses two

centers from one cluster, which divides a single cluster into two clusters. The K-means algorithm also encounters a similar

problem: it divides a cluster into three clusters, and it chooses the cluster center between two clusters.

Fig. 9 shows the results of each algorithm on the Flame dataset. As shown, the SNN-DPC, traditional DPC, DBSCAN and

OPTICS algorithms can correctly identify clusters. Furthermore, SNN-DPC and traditional DPC can also find the cluster cen-

ters. For the AP algorithm, although it correctly identifies the upper cluster and chooses the appropriate cluster center, it

divides the lower cluster into two clusters, therein choosing a cluster center in each half, which leads to an unsatisfactory

result. The K-means algorithm assigns the left end of the lower cluster to the upper cluster such that the entire dataset

resembles being slashed from the diagonal, which also leads to serious errors.

The Jain dataset shown in Fig. 10 is a dataset in which two crescent-shaped clusters of different densities are intertwined

with each other. As shown, the SNN-DPC algorithm can flexibly address datasets of this type; thus, the two clusters are per-

fectly distinguished. For the other algorithms, the results can be roughly divided into two types. The first type consists of

the DBSCAN and OPTICS algorithms, which can accurately identify the lower clusters; however, both algorithms mistakenly

divide the left end of the upper clusters into a new cluster. This type of error is closely related to the inability of tradi-

tional density-based clustering algorithms to handle variable-density clusters. Although OPTICS has been optimized for such

problems, they cannot be completely avoided. The second type of result is that obtained by the traditional DPC, AP, and

K-means algorithms, which all incorrectly assign the left end of the lower cluster to the upper cluster. If we inspect the

results carefully, we can observe that the traditional DPC algorithm selects two cluster centers in the lower cluster, leaving

the upper cluster with no center, and the AP algorithm incorrectly allocates some points of the upper cluster to the lower

cluster, which is also beyond our understanding.

Fig. 11 shows the results of the Pathbased dataset. As shown, the AP algorithm cannot accurately detect cluster centers,

considering the lower right end of the half-ring cluster as a new cluster. For the DPC and K-means algorithms, although

they can correctly select the cluster centers, during the process of point allocation, the left and right sides of the half-ring

clusters are incorrectly assigned to the other two clusters, leaving the half-ring cluster only a small part on the top. The AP

algorithm also embodies this problem. For the DBSCAN algorithm, although the other two clusters are correctly assigned,

the entire half-circle cluster is considered as noise since its density is far less than the Minpts . The OPTICS algorithm does

R. Liu et al. / Information Sciences 450 (2018) 200–226 217

Fig. 9. The clustering results on flame by 6 algorithms.

Fig. 10. The clustering results on Jain by 6 algorithms.

218 R. Liu et al. / Information Sciences 450 (2018) 200–226

Fig. 11. The clustering results on pathbased by 6 algorithms.

not ignore the half-ring cluster, but it is split into several small clusters. Only the SNN-DPC algorithm can ensure that all

three clusters are correctly distinguished.

Fig. 12 displays the results on the R15 dataset. The distribution of points makes it the most straightforward dataset for

all the algorithms. Although there are some small defects among them, all the algorithms can recognize both the clusters

and centers.

The clustering shown in Fig. 13 demonstrates the ability to address cross-winding datasets. The results of SNN-DPC,

traditional DPC, DBSCAN and OPTICS are all perfect. Additionally, notice that the centers of SNN-DPC and traditional DPC are

not the same. When using the improved ρ and δ, the centers of SNN-DPC are closer to the end of each cluster, leaving it

with fewer chances to specify an incorrect cluster center. The effect is particularly conspicuous when the dataset becomes

more complex and has a higher density. In terms of the AP algorithm, since the number of clusters is formed during the

process rather than assigned by the user, it marks numerous centers on each branch. This also demonstrates a shortcoming

of the AP algorithm. For K-means, it is evident that the dataset is evenly divided into three parts, and the cluster center

is chosen from the center of each part. Apparently, even if we pass the correct number of clusters to K-means, it cannot

efficiently address the cross-winding clusters.

Fig. 14 shows the results on the D31 dataset. In general, all the algorithms behave similarly on the D31 dataset. It ap-

pears that each algorithm can correctly find clusters and reasonably allocate points, but a closer examination reveals that,

to different extents, OPTICS and DBSCAN mark some points as noise, whereas the AP algorithm mistakenly divides some

clusters into two clusters. However, for the K-means algorithm, the result is almost as good as the SNN-DPC algorithm and

the traditional DPC algorithm.

For the S2 dataset shown in Fig. 15 , only the SNN-DPC, traditional DPC, and K-means algorithms correctly identify all

clusters. Neither the DBCAN algorithm nor the OPTICS algorithm can correctly distinguish the three clusters in the lower

right corner, and they all mark many boundary points as noise. For the AP algorithm, an anomaly occurred. Regardless of

how we adjust the value of the “preference” argument, the AP algorithm resulted in far more than 15 cluster centers.

In conclusion, it can be observed that SNN-DPC performs better than the other algorithms on several test cases; only a

few errors occur in the boundary point assignment on the Aggregation, Flame and S2 datasets, making the results slightly

poorer than those of other algorithms.

R. Liu et al. / Information Sciences 450 (2018) 200–226 219

Fig. 12. The clustering results on R15 by 6 algorithms.

Fig. 13. The clustering results on spiral by 6 algorithms.

220 R. Liu et al. / Information Sciences 450 (2018) 200–226

Fig. 14. The clustering results on D31 by 6 algorithms.

Fig. 15. The clustering results on S2 by 6 algorithms.

R. Liu et al. / Information Sciences 450 (2018) 200–226 221

Table 5

Performances of different clustering algorithms on different real-world datasets.

Algorithm AMI ARI FMI Arg- AMI ARI FMI Arg-

Iris Waveform

SNN-DPC 0.9124 0.9222 0.9479 15 0.3984 0.4176 0.6164 7

FKNN-DPC 0.8831 0.9038 0.9355 22 0.0774 0.0086 0.5050 6

DPC 0.8606 0.8857 0.9233 0.2 0.3261 0.2698 0.5292 0.1

DBSCAN 0.5692 0.6120 0.7291 0.12/5 0.0856 0.0097 0.4813 0.38/5

OPTICS 0.4513 0.6886 0.7868 0.15/5 0.0286 0.0918 0.2661 0.47/48

AP 0.5479 0.5701 0.7099 −0.57 0.2891 0.3014 0.5178 −2.20

K-Means 0.7331 0.7163 0.8112 3 0.3630 0.2536 0.5037 3

Wine Waveform(noise)

SNN-DPC 0.8735 0.8992 0.9330 18 0.3259 0.3108 0.6049 10

FKNN-DPC 0.8038 0.7990 0.8667 9 0.0711 0.0122 0.5025 6

DPC 0.7065 0.6724 0.7835 2.0 0.0896 0.0695 0.4580 2.1

DBSCAN 0.5484 0.5292 0.7121 0.50/21 0.0 0 0 0 0.0 0 0 0 0.5773 0.02/2

OPTICS 0.3698 0.4119 0.6296 0.59/7 − − − −
AP 0.3330 0.3170 0.6126 -2.02 0.0796 0.1336 0.2467 -2.43

K-Means 0.8473 0.8685 0.9126 3 0.3645 0.2519 0.5023 3

WDBC Ecoli

SNN-DPC 0.7520 0.8503 0.9305 12 0.6711 0.7547 0.8243 6

FKNN-DPC 0.3560 0.4009 0.7658 9 0.4755 0.5535 0.6919 9

DPC 0.0 0 07 −0.0028 0.7257 1.3 0.4978 0.4465 0.5775 0.4

DBSCAN 0.3581 0.4786 0.7570 0.46/38 0.4516 0.5255 0.6623 0.20/22

OPTICS 0.0856 0.4305 0.6767 0.51/65 0.4260 0.6642 0.7515 0.23/29

AP 0.5936 0.1322 0.7879 2.62 0.5339 0.4907 0.6134 −0.86

K-Means 0.6110 0.7302 0.8770 2 0.5051 0.4190 0.5542 8

Seeds Dermatology

SNN-DPC 0.7509 0.7890 0.8589 6 0.8749 0.8689 0.9021 19

FKNN-DPC 0.6971 0.7422 0.8276 9 0.8355 0.8127 0.8504 35

DPC 0.7299 0.7670 0.84 4 4 0.7 0.7840 0.7760 0.8221 1.6

DBSCAN 0.5302 0.5291 0.6711 0.24/16 0.5721 0.4165 0.5395 0.99/3

OPTICS 0.3802 0.4190 0.6350 0.81/5 0.2934 0.3430 0.4563 0.99/1

AP 0.4465 0.3936 0.6933 −2.07 0.6898 0.5935 0.6766 −0.84

K-Means 0.6705 0.7049 0.8026 3 0.8748 0.7426 0.7947 6

Segmentation Parkinsons

SNN-DPC 0.6725 0.5770 0.6457 7 0.1529 0.2916 0.8032 5

FKNN-DPC 0.5830 0.4367 0.5581 27 0.0728 0.1601 0.6582 7

DPC 0.6927 0.6004 0.6730 1.5 0.2478 0.1256 0.6187 1.2

DBSCAN 0.4965 0.4543 0.5277 0.15/2 0.0071 0.0252 0.5775 0.50/17

OPTICS 0.4312 0.4600 0.5361 0.15/1 0.0368 0.0986 0.5049 0.45/9

AP 0.2089 0.3445 0.3409 1.80 0.1098 0.0343 0.2246 0.23

K-Means 0.6102 0.5049 0.5758 7 0.2129 0.0520 0.5957 2

Libras Movement Balance Scale

SNN-DPC 0.5834 0.3927 0.4507 11 0.4082 0.5716 0.7731 20

FKNN-DPC 0.4754 0.3184 0.3976 11 0.0351 0.0236 0.5548 9

DPC 0.5358 0.3193 0.3717 0.3 0.1154 0.1394 0.5024 1.1

DBSCAN 0.4183 0.1965 0.2570 0.90/2 0.0902 0.1394 0.1510 0.03/1

OPTICS 0.1377 0.0828 0.2126 0.59/1 0.0633 0.1062 0.1165 0.03/2

AP 0.1487 0.2056 0.1971 4.31 0.0902 0.1420 0.1553 0.97

K-Means 0.5232 0.3094 0.3612 15 0.0132 0.0015 0.04 4 4 3

Ionosphere Spectrometer

SNN-DPC 0.3644 0.4 94 9 0.7798 5 0.4033 0.2377 0.2879 12

KNN-DPC 0.1314 0.1321 0.5841 26 0.3052 0.1589 0.2110 23

DPC 0.1504 0.2357 0.6491 0.5 0.3226 0.2097 0.2601 1.1

DBSCAN 0.5947 0.7226 0.8740 0.78/9 0.0902 0.1394 0.1510 0.03/1

OPTICS 0.0970 0.3383 0.6085 0.58/1 0.0902 0.1370 0.1469 0.03/1

AP 0.1367 0.0773 0.5137 1.92 0.0902 0.1420 0.1553 0.97

K-Means 0.1294 0.1776 0.6053 2 0.0388 0.0236 0.0708 48

5.3. Read-world datasets

In this section, 14 UCI datasets are selected to demonstrate the performance of the SNN-DPC clustering algorithm. These

datasets are different in terms of scale, feature number and cluster number. Table 3 provides a summary of each UCI dataset.

We fail to obtain the results with the OPTICS algorithm on the dataset Waveform(noise), possibly due to its large scale; thus,

there are only four ‘-’.

As shown in Table 5 , SNN-DPC outperforms the other algorithms in most test cases.

222 R. Liu et al. / Information Sciences 450 (2018) 200–226

Table 6

Performances of clustering algorithms on the olivetti faces dataset.

Algorithm AMI ARI FMI No clusters Arg-

SNN-DPC 0.82440 0.72012 0.72844 40 6

0.82005 0.69194 0.69976 52 6

FKNN-DPC 0.64892 0.48317 0.50671 40 5

0.65540 0.47573 0.50475 45 5

0.57461 0.39485 0.43487 33 5

DPC 0.82592 0.68628 0.69926 40 0.4

0.76826 0.61803 0.64378 34 0.4

DBSCAN 0.81168 0.64552 0.66 54 2.00/2

OPTICS 0.42857 0.50361 0.58452 40 0.59/2

AP 0.72969 0.62603 0.64 54 −0.347

K-Means 0.79436 0.65730 0.67 40 40

5.4. Olivetti faces dataset

The Olivetti Faces dataset [29] , which includes face images of 40 people, each with 10 different angles of images, is

a widely used database in machine learning fields. Since the number of people (number of clusters) is greater than the

number of faces per person (number of points within clusters), the density estimation for the DPC algorithm faces certain

difficulties. However, SNN-DPC uses an improved density based on shared neighbors; thus, the impact is less obvious. To re-

duce the storage and computational complexities, we first scale each image (originally 92 × 112) to a smaller size of 15 × 15;

then, we perform principal component analysis (PCA) to filter out attributes of cumulative contribution rates greater than

90%. Finally, we apply clustering algorithms on the data.

In this experiment, for the three density peak clustering algorithms, we test not only the performance of automatic

decision making according to the known numbers of clusters but also the situations of manually making decisions according

to the decision graph or the γ map. For the other three traditional algorithms, we only iteratively change their arguments

and show the best result.

The results of all tested algorithms are shown in Table 6 . As shown, the three metrics of the SNN-DPC algorithm are

remarkably higher than those of the other algorithms, even when selecting centers manually.

Fig. 16 a and 16 b show the results of the traditional DPC and SNN-DPC algorithms under the condition of choosing 40

centers automatically. In the figures, faces of the same color are divided into the same cluster. The white dots on the upper

right corner of photos indicate the cluster center. Gray photos mean that the number of photos of this person in this cluster

is less than 4. Such photos will not be marked as cluster centers, and thus, there may be some clusters without a center.

Fig. 16 b shows the results for traditional DPC. It can be observed that at least 3 gray photos appear on the 1st, 5 th , 17 th ,

18 th , 38 th , 39 th , and 40 th individuals, and the 15 th , 28 th , 29 th , and 31 st individuals are divided into two clusters. This

phenomenon shows that even if the correct number of cluster centers is specified, the traditional DPC algorithm still has

difficultly in locating the clusters. In addition, in the case of individuals who are only divided into one cluster, the centers

of the 4 th , 6 th , 8 th , 10 th , 11 th , 18 th , and 35 th individuals are not on any of their photos. This result suggests that the

traditional DPC algorithm may also incorrectly merge multiple clusters into one cluster.

Fig. 16 a shows the results for SNN-DPC. As shown, the 17 th , 20 th and 27 th individuals have at least 3 gray photos.

The 1 th , 15 th , 28 th , 31 st , 32 th , 35 th , 37 th , and 40 th individuals are divided into two clusters. This result indicates that

compared to the traditional DPC algorithm, SNN-DPC has more chances to detect a cluster. Moreover, only the centers of

the 33 th , 30 th , and 36 th individuals are not on any of their photos, which is reduced by 4 when compared with traditional

DPC, also demonstrating that SNN-DPC is less likely to incorrectly merge clusters.

6. Discussion

In this section, we will discuss the performance of SNN-DPC from several aspects. In detail, we will focus on the influ-

ences of the argument and the order of cases as well as the running time.

6.1. Argument

In this part, we will discuss the influence of the argument in the SNN-DPC algorithm.

In the SNN-DPC algorithm, k is a significant argument; we use k to determine how many neighbors of a point will be

considered during the process, and it affects many crucial steps in the algorithm procedure. In other words, the value of k

directly determines the performance of the SNN-DPC algorithm. Thus, it deserves a discussion.

Fig. 17 shows the AMI, ARI and FMI metric values of some representative datasets with different k argument values. The

k value ranges from 5 to 50, which is a reasonable range for all the datasets since a very small k results in all parts having

very few shared neighbors, and an excessive k results in all the points having many neighbors, both of which will make the

SNN strategy less meaningful and will negatively affect its performance.

R. Liu et al. / Information Sciences 450 (2018) 200–226 223

Fig. 16. The clustering results on olivetti faces by SNN-DPC and traditional DPC.

Fig. 17. Results on different datasets with different k arguments.

As shown in Fig. 17 , the general trend for all datasets is that a larger k results in more stable metric values. Most

datasets, regardless of whether they are synthetic or real-world datasets, fluctuate severely before k = 13 ; subsequently, the

fluctuation becomes less conspicuous. This is particularly true for the FMI metric value.

Note that for the three large-scale synthetic datasets, there is almost no fluctuation, and the same metric values are kept

from k = 5 to k = 50 , which partially indicates that, for the large-scale dataset, the performance of the SNN-DPC algorithm

is robust to changes in k . In terms of the dimension, from the highest dimensional dataset DIM512 and the second-highest

dimensional dataset Libras Movement, we can observe that the result is more stable on the high-dimensional datasets.

Meanwhile, the datasets that are of both small scale and low dimension, such as the Wine and Seeds datasets, tend

to be unstable when k is relatively small, but they eventually return to a normal level with increasing k . Both datasets

demonstrate the robustness of the SNN-DPC algorithm.

6.2. Order sensitivity

The order sensitivity considers whether, for a single clustering algorithm, the clustering result will be significantly af-

fected by the order of cases in the datasets. In general, unless there are specific reasons, an ideal clustering algorithm

should not be order sensitive.

224 R. Liu et al. / Information Sciences 450 (2018) 200–226

Fig. 18. Results of different datasets in random order.

Table 7

Running time of 3 density peak clustering algorithms (Unit: second).

Name SNN-DPC FKNN-DPC DPC Name SNN-DPC FKNN-DPC DPC

Aggregation 0.6222 0.1597 0.0697 Seeds 0.0559 0.0219 0.0069

Flame 0.0611 0.0206 0.0084 Segmentation 4.7392 0.7737 0.7349

Jain 0.1554 0.0430 0.0174 Libras Movement 0.1502 0.0481 0.0211

Pathbased 0.1083 0.0391 0.0131 Ionosphere 0.1062 0.0447 0.0141

R15 0.3697 0.0809 0.0456 Waveform 24.0300 3.0256 3.54 4 4

Spiral 0.1053 0.0264 0.0116 Waveform(noise) 23.8030 3.0709 3.7184

D31 9.5172 1.1664 1.3218 Ecoli 0.1601 0.0363 0.0146

DIM512 0.9410 0.1888 0.2268 Dermatology 0.1764 0.0442 0.0204

S2 26.4790 3.2968 3.3741 Parkinsons 0.1752 0.0498 0.0137

Iris 0.0414 0.0181 0.0072 Balance Scale 0.4 4 45 0.0455 0.0545

Wine 0.0534 0.0191 0.0055 Spectrometer 0.3364 0.1737 0.0516

WDBC 0.3527 0.0945 0.0437

In this part, we will discuss the order sensitivity of the SNN-DPC algorithm. We choose several representative datasets

from Tables 2 and 3 , and we randomize the order of cases in one of the datasets. Then, according to the argument infor-

mation shown in Tables 4 and 5 , we apply SNN-DPC to the randomized dataset with the best argument. After obtaining the

result, we randomize it and apply SNN-DPC to it again. For each dataset, we repeat this process 20 times before proceeding

to next dataset. If there are significant differences among the results of repeated experiments, we believe that the algorithm

is order sensitive; otherwise, we believe that the algorithm is not order sensitive.

Fig. 18 shows the results of all experiments. Each line represents a single dataset, and each point on the line is one

experiment. Apart from the difference in values, it is clear that, for the same dataset, the metric values are stable, without

an abrupt change or severe fluctuations. In this regard, it is convincing that the SNN-DPC algorithm is not order sensitive.

6.3. Running time

In this part, we will compare the running time of our SNN-DPC algorithm with those of the FKNN-DPC and traditional

DPC algorithms on all the datasets used in the experiments. From Section 4.3.1 , we have learned that the time complexity

of traditional DPC is O (n 2), and the time complexity of our method is O ((k + m) n 2) , where n is the number of cases in the

dataset and k represents how many neighbors will be considered in the SNN-DPC algorithm. The main time consumption is

during the process of obtaining the shared neighbors, the essence of which is the intersection of two sets. Another process

that is also time consuming is the allocation of possible subordinate points whenever the algorithm cannot assign any point

to an existing cluster, i.e., when it reaches line 14, it will add 1 to k and repeat the previous steps. This also consumes

extra time, but it allows the algorithm to be more accurate. To compensate for the large time consumption, we apply some

optimizations to the algorithm. Therefore, even though the general time complexity of the SNN-DPC is larger than that of

the traditional DPC, the actual execution times on datasets are not as slow as expected.

We perform experiments on a computer with an Intel Core i5-6300HQ 2.30 GHz CPU and 12.0 GB of RAM running MAT-

LAB 2017a (for SNN-DPC, FKNN-DPC, and DPC) and Python 3.6.2 (for the other algorithms). Table 7 shows the average run-

ning time of each algorithm on the datasets provided in Tables 2 and 3 . Since only the SNN-DPC, FKNN-DPC and traditional

DPC algorithms are implemented in MATLAB, the running times of the other algorithms are omitted from the table.

To make the results less sensitive to unexpected incidents, for each dataset, we apply its best argument and perform

the same process 50 times. All values in Table 7 are the average running time. As shown, the running time of SNN-DPC is

approximately seven or eight times that of DPC, but the values of k range between 5 and 30. It is clear that even though the

argument k has some negative influence on the running time, this influence is a relatively constant multiplier to the running

R. Liu et al. / Information Sciences 450 (2018) 200–226 225

time. Additionally, for the larger datasets, the differences are less than the average level; for example, on the “Segmentation”

dataset, SNN-DPC’s running time is 6.44 times that of traditional DPC, and on the “Waveform (noise)” dataset, it is 6.40 times

that of traditional DPC.

7. Conclusion

In this paper, we improve the traditional DPC algorithm and propose a shared-nearest-neighbor-based clustering by fast

search and find of density peaks, namely, SNN-DPC. SNN-DPC redefines the local density and distance from the nearest larger

density point and introduces the shared neighbors and local density information between points; therefore, the newly de-

fined ρ and δ can reflect the attributes of points more objectively and avoid the problem that the traditional DPC algorithm

cannot effectively address variable-density clusters. In addition, two types of point allocation strategies based on shared

neighbor information are proposed, the allocation of inevitable subordinate points and of possible subordinate points, which

avoid the problem of joint allocation errors caused by the one-step allocation strategy in the traditional DPC algorithm.

The experimental results on classical synthetic datasets, UCI real-world datasets and the Olivetti Faces dataset show that

the SNN-DPC algorithm can find cluster centers more accurately and is able to effectively work with a variety of forms and

distributions of datasets. Moreover, the algorithm can assign non-center points to the appropriate cluster. SNN-DPC is an

effective adaptive clustering algorithm, is applicable to any dimension and any size of dataset, and is robust to noise and

differences in cluster density.

For future work, we divide the work into two aspects. For the theoretical aspect, the first part is to continue to explore

the clustering algorithm based on shared neighbors, find a way to automatically determine the value of k , and simplify the

process of determining the arguments of the algorithm. The second part is continuing to improve the definition of ρ and

δ, making it easier to manually find the centers of clusters. The third part is to combine SNN-DPC with other algorithms to

play on the advantages of other algorithms and to compensate for SNN-DPC in specific problems. At the application level, we

will attempt to apply the SNN-DPC algorithm to production environments, solve practical problems, and promote production

efficiency in related fields.

Acknowledgment

This work is partly funded by the National Natural Science Foundation of China (Nos. 61672329 , 61373149 , 61472233 ,

61572300 , and 81273704), Shandong Provincial Project for Science and Technology Development (2014GGX101026), Shan-

dong Provincial Project of Education Scientific Plan (No. ZK1437B010), Taishan Scholar Program of Shandong Province (Nos.

TSHW201502038 and 20110819), and Shandong Provincial Project of Exquisite course (Nos. 2012BK294, 2013BK399, and

2013BK402).

References

[1] R. Agrawal , J. Gehrke , D. Gunopulos , P. Raghavan , Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications, 27, ACM,

1998 .
[2] M. Ankerst , M.M. Breunig , H.-P. Kriegel , J. Sander , Optics: ordering points to identify the clustering structure, in: Proceedings of the ACM Sigmod

Record, 28, ACM, 1999, pp. 49–60 .
[3] D. Dua, E. Karra Taniskidou, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2017

[http://archive.ics.uci.edu/ml] .

[4] L. Breiman , J. Friedman , C.J. Stone , R.A. Olshen , Classification and Regression Trees, CRC Press, 1984 .
[5] H. Chang , D.-Y. Yeung , Robust path-based spectral clustering, Pattern Recognit. 41 (1) (2008) 191–203 .

[6] M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. ?ukasik, S. ?ak, Complete Gradient Clustering Algorithm for Features Analysis of X-ray
Images, Springer, pp. 15–24.

[7] Y.-W. Chen , D.-H. Lai , H. Qi , J.-L. Wang , J.-X. Du , A new method to estimate ages of facial image for large database, Multimed. Tools Appl. 75 (5) (2016)
2877–2895 .

[8] A. Dempster , N. Laird , D. Rubin , Maximum Likelihood from Incomplete Data via the EM Algorithm, J. R. Stat. Soc. Ser. B Methodol. 39 (1) (1977) 1–38 .

[9] D.B. Dias , R.C. Madeo , T. Rocha , H.H. B ȡ scaro , S.M. Peres , Hand movement recognition for brazilian sign language: a study using distance-based neural
networks, in: Proceedings of the International Joint Conference on Neural Networks, IEEE, 2009, pp. 697–704 .

[10] M. Du , S. Ding , H. Jia , Study on density peaks clustering based on k-nearest neighbors and principal component analysis, Knowl. Based Syst. 99 (2016)
135–145 .

[11] M. Ester , H.-P. Kriegel , J. Sander , X. Xu , A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the
KDD, 96, 1996, pp. 226–231 .

[12] E.B. Fowlkes , C.L. Mallows , A method for comparing two hierarchical clusterings, J. Am. Stat. Assoc. 78 (383) (1983) 553–569 .

[13] P. Franti , O. Virmajoki , V. Hautamaki , Fast agglomerative clustering using a k-nearest neighbor graph, IEEE Trans. Pattern Anal. Mach. Intell. 28 (11)
(2006) 1875–1881 .

[14] B.J. Frey , D. Dueck , Clustering by passing messages between data points, Science 315 (5814) (2007) 972–976 .
[15] P. Frnti , O. Virmajoki , Iterative shrinking method for clustering problems, Pattern Recognit. 39 (5) (2006) 761–775 .

[16] L. Fu , E. Medico , Flame, a novel fuzzy clustering method for the analysis of dna microarray data, BMC Bioinform. 8 (1) (2007) 3 .
[17] A. Gionis , H. Mannila , P. Tsaparas , Clustering aggregation, ACM Trans. Knowl. Discov. Data 1 (1) (2007) 4 .

[18] S. Guha , R. Rastogi , K. Shim , Cure: an efficient clustering algorithm for large databases, in: Proceedings of the ACM Sigmod Record, 27, ACM, 1998,

pp. 73–84 .
[19] L. Huang , Y. Li , G. Wang , Y. Wang , Community detection method based on vertex distance and clustering of density peaks, J. Jilin Univ. Eng. Technol.

Ed. 46 (6) (2016) 2042–2051 .
[20] A.K. Jain , M.H. Law , Data clustering: a user’s dilemma, PReMI 3776 (2005) 1–10 .

[21] R.A. Jarvis , E.A. Patrick , Clustering using a similarity measure based on shared near neighbors, IEEE Trans. Comput. 100 (11) (1973) 1025–1034 .
[22] Y. Ju, Research on manifold-based density peaks clustering algorithm, (Thesis), 2016.

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0002
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0019

226 R. Liu et al. / Information Sciences 450 (2018) 200–226

[23] L. Kaufman , P. Rousseeuw , Clustering by Means of Medoids, North-Holland, 1987 .
[24] T. Li , H. Ge , S. Su , Density peaks clustering by automatic determination of cluster centers, J. Front. Comput. Sci. Technol. 10 (11) (2016) 1614–1622 .

[25] J. MacQueen , Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathe-
matical Statistics and Probability, 1, Oakland, CA, USA., 1967, pp. 281–297 .

[26] R. Mehmood , G. Zhang , R. Bie , H. Dawood , H. Ahmad , Clustering by fast search and find of density peaks via heat diffusion, Neurocomputing 208
(2016) 210–217 .

[27] F. Pedregosa , G. Varoquaux , A. Gramfort , V. Michel , B. Thirion , O. Grisel , M. Blondel , P. Prettenhofer , R. Weiss , V. Dubourg , Scikit-learn: machine learning

in python, J. Mach. Learn. Res. 12 (Oct) (2011) 2825–2830 .
[28] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks, Science 344 (6191) (2014) 14 92–14 96, doi: 10.1126/science.1242072 .

[29] F.S. Samaria , A.C. Harter , Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on
Applications of Computer Vision, IEEE, 1994, pp. 138–142 .

[30] G. Sheikholeslami , S. Chatterjee , A. Zhang , Wavecluster: a wavelet-based clustering approach for spatial data in very large databases, VLDB J. Int. J.
Very Large Data Bases 8 (3–4) (20 0 0) 289–304 .

[31] X. Shi , G. Feng , M. Li , Y. Li , C. Wu , Overlapping community detection method based on density peaks, J. Jilin Univ. Eng. Technol. Ed. 47 (1) (2017)
242–248 .

[32] Y. Shi , Z. Chen , Z. Qi , F. Meng , L. Cui , A novel clustering-based image segmentation via density peaks algorithm with mid-level feature, Neural Comput.

Appl. (2016) 1–11 .
[33] V.G. Sigillito , S.P. Wing , L.V. Hutton , K.B. Baker , Classification of radar returns from the ionosphere using neural networks, Johns Hopkins APL Tech.

Dig. 10 (3) (1989) 262–266 .
[34] D.B. Goldgof , Nuclear feature extraction for breast tumor diagnosis, Proc Spie 1993 (1992) 861–870 .

[35] A. Strehl , J. Ghosh , Cluster ensembles—a knowledge reuse framework for combining multiple partitions, J. Mach. Learn. Res. 3 (Dec) (2002) 583–617 .
[36] P. Tan , Introduction to Data Mining, Pearson Education India, 2006 .

[37] C.J. Veenman , M.J.T. Reinders , E. Backer , A maximum variance cluster algorithm, IEEE Trans. Pattern Anal. Mach. Intell. 24 (9) (2002) 1273–1280 .

[38] N.X. Vinh , J. Epps , J. Bailey , Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance,
J. Mach. Learn. Res. 11 (Oct) (2010) 2837–2854 .

[39] U. Von Luxburg , A tutorial on spectral clustering, Stat. Comput. 17 (4) (2007) 395–416 .
[40] S. Wang , D. Wang , C. Li , Y. Li , G. Ding , Clustering by fast search and find of density peaks with data field, Chin. J. Electron. 25 (3) (2016) 397–402 .

[41] W. Wang , J. Yang , R. Muntz , Sting: a statistical information grid approach to spatial data mining, in: Proceedings of the VLDB, 97, 1997, pp. 186–195 .
[42] J. Xie , H. Gao , W. Xie , X. Liu , P.W. Grant , Robust clustering by detecting density peaks and assigning points based on fuzzy weighted k-nearest neigh-

bors, Inf. Sci. (Ny) 354 (2016) 19–40 .

[43] J. Xie , R. Girshick , A. Farhadi , Unsupervised deep embedding for clustering analysis, in: Proceedings of the International Conference on Machine
Learning, 2016, pp. 478–487 .

[44] J. Xu , G. Wang , W. Deng , Denpehc: density peak based efficient hierarchical clustering, Inf. Sci. (Ny) 373 (2016) 200–218 .
[45] T. Zhang , R. Ramakrishnan , M. Livny , Birch: an efficient data clustering method for very large databases, in: Proceedings of the ACM Sigmod Record,

25, ACM, 1996, pp. 103–114 .
[46] Y. Zhang , Y. Xia , Y. Liu , W. Wang , Clustering sentences with density peaks for multi-document summarization, in: Proceedings of the HLT-NAACL, 2015,

pp. 1262–1267 .

[47] J. Zhong , W.T. Peter , Y. Wei , An intelligent and improved density and distance-based clustering approach for industrial survey data classification, Expert
Syst. Appl. 68 (2017) 21–28 .

http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0024
https://doi.org/10.1126/science.1242072
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0030a
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0030a
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30209-3/sbref0043

	Shared-nearest-neighbor-based clustering by fast search and find of density peaks
	1 Introduction
	2 Related works
	3 DPC algorithm and analysis
	3.1 Notations
	3.2 DPC algorithm
	3.3 Analysis
	3.3.1 Various densities
	3.3.2 Allocation strategy

	4 SNN-DPC Algorithm
	4.1 Definitions
	4.2 Processes
	4.3 Analysis of complexity
	4.3.1 Time complexity
	4.3.2 Space complexity

	5 Experiment
	5.1 Metrics, preprocessing and argument selection
	5.2 Synthetic datasets
	5.3 Read-world datasets
	5.4 Olivetti faces dataset

	6 Discussion
	6.1 Argument
	6.2 Order sensitivity
	6.3 Running time

	7 Conclusion
	 Acknowledgment
	 References

